Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Clin Pathol ; 156(1): 15-23, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1225588

ABSTRACT

OBJECTIVES: To report our institutional experience in devising and implementing a pooling protocol and process for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription polymerase chain reaction (RT-PCR) testing over a 3-month period in the fall of 2020. METHODS: The widespread testing implemented in the United States for detecting SARS-CoV-2 infection in response to the coronavirus disease 2019 pandemic has led to a significant shortage of testing supplies and therefore has become a major impediment to the public health response. To date, several institutions have implemented sample pooling, but publications documenting these experiences are sparse. Nasal and nasopharyngeal samples collected from low-positivity (<5%) areas were tested in pools of five on the Roche cobas 6800 analyzer system. Routine SARS-CoV-2 RT-PCR turnaround times between sample collection to result reporting were monitored and compared before and after sample pooling implementation. RESULTS: A total of 4,131 sample pools were tested over a 3-month period (during which 39,770 RT-PCR results were reported from the Roche system), allowing our laboratory to save 13,824 tests, equivalent to a conservation rate of 35%. A 48-hour or less turnaround time was generally maintained throughout the pooling period. CONCLUSIONS: Sample pooling offers a viable means to mitigate shortfalls of PCR testing supplies in the ongoing pandemic without significantly compromising overall turnaround times.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/genetics , Clinical Laboratory Techniques/methods , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL